. g Information Coding / Computer Graphics, ISY, LiTH
<4

Sorting on GPUs

Revisiting some algorithms from lecture 6:
Some not-so-good sorting approaches
Bitonic sort
QuickSort

Concurrent kernels and recursion

> g Information Coding / Computer Graphics, ISY, LiTH
4

Adapt to parallel algorithms

Many sorting algorithms are highly sequential
Suitable for parallel implementation?
- Data driven execution

- Data independent execution

d Information Coding / Computer Graphics, ISY, LiTH
-

Data driven execution

Computing pattern depends on data
Usually harder to parallellize!

Example: QuickSort.

> drﬁ: Information Coding / Computer Graphics, ISY, LiTH
o

Data independent execution

Known computing pattern
Easier to parallellize - always the same plan

Example: Bitonic sort

) 1;)"": Information Coding / Computer Graphics, ISY, LiTH
<4

Bubble sort

Loop through data, compare neighbors
Extremely sequential
Inefficient

Parallel version: Bubble sort with odd-even transposition
method

Compare all items pairwise

Two phases, "odd phase” and ”even phase” (shifted one
step”

:“ ,g't: Information Coding / Computer Graphics, ISY, LiTH
44

%,
Mo

Bubble sort, parallel version

Bubble sort with odd-even transposition method
Compare all items pairwise

Two phases, "odd phase” and ”even phase” (shifted one
step”

Fully sorted after n phases

Even phase

Odd phase
O(n2)

:“ g : Information Coding / Computer Graphics, ISY, LiTH
24

Suitable for GPU?

Not as bad as it seems at first look:
- Data independent
- Excellent locality
* Pretty good possibilities to use shared memory (but with
some costly transfers at edges between blocks). Thus close
to optimal in global memory transfers.

- But certainly not optimal at very large sizes

”Better” algorithms don’t necessary beat this all that easily!

{ g Information Coding / Computer Graphics, ISY, LiTH
=

Rank sort

Count number of items that are smaller
Easy to parallelize:
- One thread per item
- Loop through entire data

« Store in index decided from count of number of smaller
items.

:“ g : Information Coding / Computer Graphics, ISY, LiTH
<4

Suitable for GPU?

Again, not as bad as it seems at first look:
- Data independent

- Excellent locality - especially good for broadcasting (e.g.
constant memory). Also suitable for shared memory.

- Again, O(n2): Will grow at very large sizes

Two bad ones that are not quite as bad as they seem.

N parallel iterations may beat NlogN sequential ones!

d Information Coding / Computer Graphics, ISY, LiTH
-

Bitonic sort

(As described in lecture 6)

Bitonic set: Two monotonic parts in different direction.

g : Information Coding / Computer Graphics, ISY, LiTH
o, P

Bitonic sort

(According to Batcher:) Let a be a bitonic set with a maximum
at k, consisting of two monotonic parts, one increasing, a- (from
item 1 to k) and one decreasing, at (k+1 to n)

Then two new sets can be constructed as

a’ = min(at, ak+1), min(az, ak+2)...
a” = max(a1, ak+1), min(az, ak+2)...

These two sets are also bitonic and max(a’) = min(a”)!

,g"“: Information Coding / Computer Graphics, ISY, LiTH
e

Uy
Mo

Bitonic sort by divide-and-
conquer

Bitonic sort works on a bitonic sequence:
partially sorted

The parts must be sorted. Sort them by
bitonic sort!

o COMN
o+ S
¥ g
. .
A “‘j

YO |

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort example

THEEE
RUEINA R
IENHE RS
pfly

Bitonic Reverse Bitonic Reverse
sort of parts sort of parts
smaller (bitonic main (bitonic
part merge) part merge)

Information Coding / Computer Graphics, ISY, LiTH

Bigger example

The problem scales nicely, uniformly

= e e | e | e e

BB bl b e e o e

B B et [t] P e e
< [t [[e e e

More stages gives longer stages (Image from
Wikipedia)

i g"*: Information Coding / Computer Graphics, ISY, LiTH
4

A,
¥
Y

Get those steps right

Step length
Step direction
Comparison direction

Calculated from stage number and stage
length

Information Coding / Computer Graphics, ISY, LiTH

Code examples

Sequential
Recursive example

Ilterative example

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
- Data independent, no worst case
- Fast: O(n-log2n) (Why?)
- Good locality in some parts
but

- Big leaps in addressing for some parts

g'h: Information Coding / Computer Graphics, ISY, LiTH
"

4,
i,
i

What about those big leaps?

Small leaps: Can be computed within one block.
Shared memory friendly.

Big leaps (>number of threads/block): No
synchronization possible between blocks!

But we must synchronize!

-> multiple kernel runs!

{ ,g"’*: Information Coding / Computer Graphics, ISY, LiTH
=

QuickSort

Very popular algorithm for sequential
implementation

Choose
Ivot
~y /]~ PO
. N
Compare to pivot, form two
subsets, repeat
by ™ N

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expect QuickSort to be nothing but optimal

§ ,g"*: Information Coding / Computer Graphics, ISY, LiTH
4

K|
4
Mia

QuickSort is

Fast: O(n-logn) in typical cases
O(n2) in the worst case
Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expects QuickSort to be nothing
but optimal

- 1’_,"’*: Information Coding / Computer Graphics, ISY, LiTH
44

QuickSort on GPU

Initially ignored as impractical
CUDA implementations exist

Data driven approaches increasingly suitable as
GPUs become more flexible

:J grﬁ: Information Coding / Computer Graphics, ISY, LiTH
24

Parallel QuickSort

Several stages to consider:
* Pivot selection. Usually just grab one.
- Comparisons
- Partitioning

- Concatenate result

il

.

z
£

"\ N
: ,% Information Coding / Computer Graphics, ISY, LiTH

Pivot selection

If we could always pick a pivot that splits the data
in half...

—

That
would be

’ 4 greeat

:g % Information Coding / Computer Graphics, ISY, LiTH
-

but you can’t do that without sorting!
But how about a random one?

TOUR OF ACCOUNTING

SURE.

| ARe
NINE NINE d Yo THAT'S THE
OVER HERE NINE NINE H i PROBLEM
WE HAVE OUR NINE NINE . WITH RAN-
THAT'S DOMNESS
RANDOM NUMBER !_ Lyt
GENERATOR.. YOU CAN
1\ ’ NEVER BE

ola5[a® 001 United Faature Synd

e
www. dilbert.com scottadams®asl com

There is a worst case caused by bad pivots. Live with it!

1'{,%: Information Coding / Computer Graphics, ISY, LiTH
-

Comparisons

Easy to parallelize

One thread per comparison not unreasonable!
(GPUs don’t have a problem with many threads!)

No problem!

- _g"*: Information Coding / Computer Graphics, ISY, LiTH
4

Partitioning
The big problem!
Sequential partitioning: Bad!

Parallel partitioning 1: Atomic fetch & increment.
(GPUs have atomics!)

Parallel partitioning 2: Divide and conquer

g'a: Information Coding / Computer Graphics, ISY, LiTH
44

Recursion

GPUs can’t do recursion efficiently... or can they?
New in Kepler: Concurrent kernels

Not only a matter of launching kernels from CPU!
A kernel can spawn new kernels!

Do recursion by spawning new kernels!

= ‘r‘.,t’

,,d E Information Coding / Computer Graphics, ISY, LiTH
=

Concurrent kernels, Dynamic Parallelism

Less work for the CPU to manage the computation.

CPU GPU CPU GPU

|| g

. COHMNG |

Information Coding / Computer Graphics, ISY, LiTH

Recursion can look like this:

__global woid guicksort(int *data, int left, int right)
{

int nleft, nright;

cudaStream t sl1, s2;

// Partitions data based on pivot of first element.
// Returns counts in nleft & nright

partiticn (data+left, data+right, data[left], nleft, nright); BUt does thls
./, really do a good
If a2 sub—array needs sorting, launch a new grid for it. i i :)
/{ Mote use of streams to get concurrency between sub-sorts JOb on part|t|0n|ng.
if(left « mnright) {

cudaStreamCreateWithFlags(&sl, cudaStreamNonBleocking);

quicksocrt<<< ..., 8l >>>(data, left, nright);
1
if(nleft < right) {

cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);

quicksort<<< ..., 52 >>>(data, nleft, right);

}

__host woid launch guicksort(int *data, int count)
i Source:
quicksort<<< ... >>>(data, 0, count-1); http://blogs.nvidia.com/blog/2012/09/
} 12/how-tesla-k20-speeds-up-
quicksort-a-familiar-comp-sci-code/

jj E Information Coding / Computer Graphics, ISY, LiTH
.

Advantages
- Less work for CPU
- Less synchronizing (from CPU side)

- Easier programming!

They Clalm |t Qlli_t:ksnrt Performance
matters thiS Dynamic Parallel vs. Host-Controlled
much (but your
milage will vary)

e

w
in
|
|
|
|
|

w
|
|

b2
in

CPULaunch
PN, T GPU Launch

=
(= Ln
|
—

Relative Sorting Performance
a2

=
tn

[=]

Increasing Problem Size

Information Coding / Computer Graphics, ISY, LiTH

Recursive CUDA kernels, a promising
improvement

Big change in GPU computing?
Southfork has GPUs that support it.

